Grade 11/12 Math Circles
 February 28, March 6, 2024 Population Modeling - Problem Set

1. Suppose a population of lake trout is growing according to the logistic equation

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right) .
$$

(a) What is the maximum possible growth rate for the population? When is it reached? (Write the answer in terms of r and/or K)
(b) After some investigation on K, a biologist decides to maximize his fishing yield by maintaining a population of lake trout at 1000 individuals. What is the value of K ?
(c) After some more investigation on r, the biologist estimates that $r=0.01$ individuals/(day . individual). Now if 1200 additional lake trouts are added to the population, what will the instantaneous population growth rate be?
2. Suppose the life history of a plant is shown below:

We initially recorded 100 seeds, 250 small plants, and 50 large plants. After 1 year, we found that 20% of the seeds germinated and grew into small plants, 50% of small plants grew into large plants, and 80% of large plants survived. We also counted that each small plant can produce 5 seeds, while each large plant can produce 20 seeds on average.
(a) Write down the life table of the plant in a matrix A and the initial population matrix N_{0}.
(b) Calculate the number of seeds, small plants, and large plants after 1 year.
(c) Calculate the number of seeds, small plants, and large plants after 2 years.
(d) Use an online calculating tool to calculate $A^{n} N_{0}$ for $n=3,4,5,6,7,8$. Then plot the natural logarithm (ln) number of individuals in each stage class versus time. What did you find?

